3.493 \(\int \frac{\sqrt{a+b x}}{x^{3/2}} \, dx\)

Optimal. Leaf size=45 \[ 2 \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a+b x}}\right )-\frac{2 \sqrt{a+b x}}{\sqrt{x}} \]

[Out]

(-2*Sqrt[a + b*x])/Sqrt[x] + 2*Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[x])/Sqrt[a + b*x]]

________________________________________________________________________________________

Rubi [A]  time = 0.0166056, antiderivative size = 45, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.267, Rules used = {47, 63, 217, 206} \[ 2 \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a+b x}}\right )-\frac{2 \sqrt{a+b x}}{\sqrt{x}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x]/x^(3/2),x]

[Out]

(-2*Sqrt[a + b*x])/Sqrt[x] + 2*Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[x])/Sqrt[a + b*x]]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{a+b x}}{x^{3/2}} \, dx &=-\frac{2 \sqrt{a+b x}}{\sqrt{x}}+b \int \frac{1}{\sqrt{x} \sqrt{a+b x}} \, dx\\ &=-\frac{2 \sqrt{a+b x}}{\sqrt{x}}+(2 b) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^2}} \, dx,x,\sqrt{x}\right )\\ &=-\frac{2 \sqrt{a+b x}}{\sqrt{x}}+(2 b) \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{\sqrt{x}}{\sqrt{a+b x}}\right )\\ &=-\frac{2 \sqrt{a+b x}}{\sqrt{x}}+2 \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a+b x}}\right )\\ \end{align*}

Mathematica [A]  time = 0.0980414, size = 64, normalized size = 1.42 \[ \frac{2 \left (\sqrt{a} \sqrt{b} \sqrt{\frac{b x}{a}+1} \sinh ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a}}\right )-\frac{a+b x}{\sqrt{x}}\right )}{\sqrt{a+b x}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x]/x^(3/2),x]

[Out]

(2*(-((a + b*x)/Sqrt[x]) + Sqrt[a]*Sqrt[b]*Sqrt[1 + (b*x)/a]*ArcSinh[(Sqrt[b]*Sqrt[x])/Sqrt[a]]))/Sqrt[a + b*x
]

________________________________________________________________________________________

Maple [A]  time = 0.017, size = 61, normalized size = 1.4 \begin{align*} -2\,{\frac{\sqrt{bx+a}}{\sqrt{x}}}+{\sqrt{b}\ln \left ({ \left ({\frac{a}{2}}+bx \right ){\frac{1}{\sqrt{b}}}}+\sqrt{b{x}^{2}+ax} \right ) \sqrt{x \left ( bx+a \right ) }{\frac{1}{\sqrt{x}}}{\frac{1}{\sqrt{bx+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^(1/2)/x^(3/2),x)

[Out]

-2*(b*x+a)^(1/2)/x^(1/2)+b^(1/2)*ln((1/2*a+b*x)/b^(1/2)+(b*x^2+a*x)^(1/2))*(x*(b*x+a))^(1/2)/x^(1/2)/(b*x+a)^(
1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)/x^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.70109, size = 243, normalized size = 5.4 \begin{align*} \left [\frac{\sqrt{b} x \log \left (2 \, b x + 2 \, \sqrt{b x + a} \sqrt{b} \sqrt{x} + a\right ) - 2 \, \sqrt{b x + a} \sqrt{x}}{x}, -\frac{2 \,{\left (\sqrt{-b} x \arctan \left (\frac{\sqrt{b x + a} \sqrt{-b}}{b \sqrt{x}}\right ) + \sqrt{b x + a} \sqrt{x}\right )}}{x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)/x^(3/2),x, algorithm="fricas")

[Out]

[(sqrt(b)*x*log(2*b*x + 2*sqrt(b*x + a)*sqrt(b)*sqrt(x) + a) - 2*sqrt(b*x + a)*sqrt(x))/x, -2*(sqrt(-b)*x*arct
an(sqrt(b*x + a)*sqrt(-b)/(b*sqrt(x))) + sqrt(b*x + a)*sqrt(x))/x]

________________________________________________________________________________________

Sympy [A]  time = 1.71108, size = 68, normalized size = 1.51 \begin{align*} - \frac{2 \sqrt{a}}{\sqrt{x} \sqrt{1 + \frac{b x}{a}}} + 2 \sqrt{b} \operatorname{asinh}{\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a}} \right )} - \frac{2 b \sqrt{x}}{\sqrt{a} \sqrt{1 + \frac{b x}{a}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**(1/2)/x**(3/2),x)

[Out]

-2*sqrt(a)/(sqrt(x)*sqrt(1 + b*x/a)) + 2*sqrt(b)*asinh(sqrt(b)*sqrt(x)/sqrt(a)) - 2*b*sqrt(x)/(sqrt(a)*sqrt(1
+ b*x/a))

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)/x^(3/2),x, algorithm="giac")

[Out]

Timed out